

GMS 10.5 Tutorial **MODFLOW-USG – TVM Package**

Use the Time-Variant Materials package (TVM) in GMS

Objectives

Learn how to use the Time-Variant Materials package (TVM) with MODFLOW-USG Transport.

Prerequisite Tutorials

• MODFLOW-USG Transport

Required Components

- Map Module
- Grid Module
- MODFLOW-USG Transport
- Time

• 20–30 minutes

1	Introduction	. 2
2	Getting Started	. 2
3	Changing the Conductivity	.3
4	Map to MODFLOW	.5
5	Activating the TVM Package	.5
6	Defining the TVM Package	. 5
7	Saving and Running MODFLOW	.6
8	Examining the Results	.7
9	Conclusion	. 8

1 Introduction

The Time-Variant Materials package (TVM) works with MODLOW-USG Transport. The TVM package allows hydraulic conductivity and storage values to be changed as a step function between stress periods or in a continuous manner through a transient simulation.

This tutorial demonstrates how the TVM package can be used with a MODFLOW-USG Transport simulation.

The problem in this tutorial consists of a two layer unstructured grid (UGrid) with a MODFLOW-USG Transport simulation. The UGrid contains a well on the second layer set with a constant pumping rate.

This tutorial will demonstrate the following topics:

- 1. Opening an existing MODFLOW-USG Transport simulation.
- 2. Create a transient conductivity coverage and dataset.
- 3. Activating the TVM package.
- 4. Running the simulation and examining the results.

2 Getting Started

Do the following to get started:

- 1. If necessary, launch GMS.
- 2. If GMS is already running, select *File* / **New** to ensure that the program settings are restored to their default state.
- 3. Click **Open** i (or *File* / **Open...**) to bring up the *Open* dialog.
- 4. Browse to the *Tutorials**MODFLOW-USG-Transport**TVM* directory and select "start.gpr".
- 5. Click **Open** to import the file and close the *Open* dialog.

Figure 1 Imported MODFLOW-USG Transport model

The Graphics Window should appear as in Figure 1. This model has a two layer UGrid with a refined zone. General heads have been set at each end. There is a well on the second layer.

Before continuing, save the project with a new name.

- 1. Select *File* | **Save As...** to bring up the *Save As* dialog.
- 2. Browse to the *Tutorials**MODFLOW-USG-Transport**TVM* directory.
- 3. Enter "model-tvm.gpr" as the *File name*.
- 4. Select "Project Files (*.gpr)" from the Save as type drop-down.
- 5. Click **Save** to save the project file and close the *Save As* dialog.

3 Changing the Conductivity

Before activating the TVM package, start with creating a time-variant dataset for the refined area of the UGrid. This will be done using a separate map coverage which will then be added to the model.

- 1. Right-click on the "S model" conceptual model and select New Coverage... to bring up the *Coverage Setup* dialog.
- 2. Enter "tvm_hk" for the *Coverage name*.
- 3. In the Areal Properties column, turn on Datasets.
- 4. Click the **Datasets...** button to open the *Datasets* dialog.
- 5. Click the **Insert Row** = button
- 6. In the new row, enter "TVM_HK".
- 7. Click **OK** to close the *Datasets* dialog.

8. Click **OK** to close the *Coverage Setup* dialog.

With the new " tvm-hk" coverage created, time-variant data needs to be added to the refined area of the UGrid.

- 9. Make certain the "🗢 tvm-hk" coverage is active in the Project Explorer.
- 10. Using the **Create Arcs** \checkmark tool, create four arcs around the refined area of the UGrid as in Figure 2 below.

Figure 2 Arcs drawn around refined around of the UGrid

- 11. Select the **Build Polygons** $\widehat{\mathbf{L}}$ macro.
- 12. Using the **Select Polygon** Σ tool, double-click on the polygon to open the *Attribute Table* dialog.
- 13. Change the *TVM_HK* column to be "<transient>".
- 14. Click the 🔤 button to open the *XY Series Editor*.
- 15. Enter the values in the table below to create a time series:

Time (d)	TVM_HK
0.0	1.5
1.0	1.5
1.0	3.0
101.0	3.0
101.0	6.0
201.0	6.0

- 16. Click **OK** to close the *XY Series Editor*.
- 17. Click **OK** to close the *Attribute Table* dialog.

The "tvm_hk" coverage now contains time-variant material data that can be added to the MODFLOW-USG Transport simulation.

4 Map to MODFLOW

The data added in the conceptual model needs to be mapped to the UGrid model.

- 1. Right-click on the "Some model" conceptual model and select *Map To* | **MODFLOW/MODPATH** to open the *Map* \rightarrow *Model* dialog.
- 2. Select All applicable coverages and click **OK** to close the $Map \rightarrow Model$ dialog.

A new dataset, "^{III} TVM_HK", should appear in the Project Explorer in the MODFLOW simulation.

5 Activating the TVM Package

With the horizontal conductivity data available, the TVM package can now be activated and added to the MODFLOW simulation. To activate the TVM package:

- 1. Select *MODFLOW* / **Global Options...** to bring up the *MODFLOW Global/Basic Package* dialog.
- 2. Click **Packages...** to bring up the *MODFLOW Packages / Processes* dialog.
- 3. In the *Optional packages / processes* section, turn on *TVM Time Varying Materials*.
- 4. Leave all other packages at their defaults.
- 5. Click **OK** to exit the *MODFLOW Packages / Processes* dialog.
- 6. Click **OK** to exit the *MODFLOW Global/Basic Package* dialog.

6 Defining the TVM Package

With the time varying dataset mapped to the simulation and the TVM package activated, the parameters for the TVM package can now be defined.

- 1. Select *MODFLOW* / *Optional Packages* | **TVM Time Varying Materials...** to bring up the *TVM Package* dialog.
- 2. In the list on the left, select *HK*.
- 3. Select **Dataset to Array** to bring up the *Select Dataset* dialog.
- 4. Under *Solution*, select "TVM_HK".
- 5. Turn on All time steps.

- 6. Click **OK** to close the *Select Dataset* dialog.
- 7. Click **OK** to close the *TVM Package* dialog.

😔 TVM Package						×
Comments Variables	Stress period boundary: 0 🔄 Time: 0.0 (0 = start of period 1, 1 = end of period 1, 2 = end of period 2)					
Sizes HK	ІТУМНК	HKNEW				^
VKA	21	1.5				
SY SY	22	1.5				
DDFTR POR	23	1.5				
	24	1.5				
	25	1.5				
	26	1.5				
	27	1.5				
	28	1.5				
	29	1.5				
	30	1.5				
	31	1.5				
	32	1.5				
	33	1.5				
	34	1.5				
	35	1.5				~
		A	rray To Dataset		Dataset To Array	
Help	₽ _₽	*			ОК	Cancel

Figure 3 TVMPackage dialog

7 Saving and Running MODFLOW

The changes should now be saved before running MODFLOW-USG Transport.

- 1. Click **Save** 🖬 to save the project.
- 2. Click the **Run MODFLOW** macro in the toolbar to bring up the *MODFLOW* model wrapper dialog.
- 3. When MODFLOW finishes, check the *Read solution on exit* and *Turn on contours (if not on already)* boxes.
- 4. Click **Close** to close the *MODFLOW* model wrapper dialog.
- 5. Click **Save** los to save the project with the new solution.

The solution set should appear in the Project Explorer.

8 Examining the Results

In order to more clearly see how the TVM package impacted the simulation, compare the results. This can be done by using the *Data Calculator* to create a dataset that compares the solution set with the TVM package to the previous solution set.

- 1. Click the **Data Calculator** macro to open the *Data Calculator* dialog.
- 2. In the *Datasets* section, select the "🛅 Head" dataset under the "🖆 start (MODFLOW)" folder.
- 3. In the *Time steps* section, turn on *Use all time steps*.
- 4. Click **Add to Expression**.
- 5. Click the **minus** (-) button.
- 6. In the *Datasets* section, select the "🛅 Head" dataset under the "🖆 model-tvm (MODFLOW)" folder.
- 7. Click **Add to Expression**.
- 8. Enter "diff" in the *Result* field.
- 9. Click **Compute**.
- 10. Click **Done** to close the *Data Calculator* dialog.
- 11. Select the "Indiff" dataset in the Project Explorer.
- 12. In the *Time Steps* window, use the down arrow key to step through the time steps and watch how the contours change.

Figure 4 Last time step of the difference dataset showing the results of the TMV package.

9 Conclusion

This concludes the tutorial. Here are the key concepts from this tutorial:

- Using the TVM Package to add time varying materials to a MODFLOW-USG Transport simulation.
- Creating a time variant dataset the **Map** $\stackrel{\text{N}}{\leftarrow}$ module.
- Activating the TVM package for a MODFLOW simulation.